Temporal and spatial characterization of keratinocytes supporting orf virus replication

支持 orf 病毒复制的角质形成细胞的时间和空间特征

阅读:6
作者:Byung-Joon Seung, Sushil Khatiwada, Daniel L Rock, Gustavo Delhon

Abstract

Reflecting their tropism for keratinocytes, most poxviruses that infect vertebrates replicate to high titers and cause pathology in the skin. Keratinocytes, the main cells of the epidermis, are found in different stages of a differentiation program that produces the critical barrier against environmental damage. While systemic poxviruses (e.g. smallpox virus, sheeppox virus) also infect other cell types, the parapoxvirus orf virus (ORFV), which causes localized infections in sheep and goats, has not been shown to replicate in cells other than keratinocytes. Notably, ORFV infection only occurs after or concomitant with epidermal damage and the subsequent healing response and shows unexplained delayed virus replication in an uncharacterized keratinocyte subpopulation. Using in situ hybridization, immunohistochemistry, confocal microscopy, qPCR, and a full-thickness wound/infection model in sheep, the natural host, we show that during an initial 2-day eclipse phase viral transcription and viral DNA replication are not detected. Between days 2 and 3 pi, viral transcription is first detected in keratinocytes of the stratum granulosum and upper stratum spinosum in the proliferative zone at the wound margin. These cells are positive for cytokeratin 10, a suprabasal marker; cytokeratin 6, a protein induced during early repair responses; stratum granulosum markers filaggrin and loricrin; and negative for the nuclear proliferation marker Ki-67 and cytokeratin 14, a basal cell marker. This marker profile suggests that keratinocytes supportive of viral replication are engaged in advanced keratinocyte differentiation rather than proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。