RNA-binding Protein QKI Inhibits Osteogenic Differentiation Via Suppressing Wnt Pathway

RNA 结合蛋白 QKI 通过抑制 Wnt 通路抑制成骨分化

阅读:9
作者:Zhao Yan, Banjun Ruan, Shan Wang, Tianshu Du, Xiaolong Shao, Guo Chen, Li Wang, Dongsheng Zhai, Shu Zhu, Zifan Lu, Xiaorui Cao

Background

Dysregulation of MSCs differentiation is associated with many pathophysiological processes. Genetically modified MSCs transplantation helps restore bone loss efficiently.

Conclusions

QKI suppressed BMSCs osteogenic differentiation by downregulating the expressions of Wnt5b, Fzd7, Dvl3 and β-catenin. Loss of QKI in BMSCs transplantation may provide a new strategy for the treatment of orthopedic diseases such as osteoporosis.

Methods

BMSCs-specific QKI overexpressing and knockdown mice were built to explore QKI's role in bone formation and fat accumulation. Primary BMSCs with QKI overexpression and knockout were subjected to osteogenic and adipogenic differentiation. ALP staining and oil red O staining were performed to evaluate the differences between the groups. RNA immunoprecipitation was performed to identify the QKI-related pathway. QKI deficient BMSCs were transplanted into mice with glucocorticoid-induced osteoporosis to evaluate its therapeutic potential.

Results

Mice harboring BMSC-specific transgenic QKI exhibited reduced bone mass, while BMSC-specific QKI-deficient mice showed an increase in bone mass. Osteogenic differentiation of QKI deficient BMSCs was promoted and adipogenic differentiation was inhibited, while QKI overexpression in BMSCs displayed the opposite effects. To define the underlying mechanisms, RIP sequencing was performed. Wnt pathway-related genes were the putative direct target mRNAs of QKI, Canonical Wnt pathway activation was involved in QKI's effects on osteogenic differentiation. RNA immunoprecipitation quantitative real-time Polymerase Chain Reaction (PCR) and RNA fluorescence in situ hybridization experiments further validated that QKI repressed the expressions of Wnt5b, Fzd7, Dvl3 and β-catenin via direct binding to their putative mRNA specific sites. Glucocorticoid-induced osteoporotic mice transplanted with QKI deficient BMSCs exhibited less bone loss compared with mice transplanted with control BMSCs. Conclusions: QKI suppressed BMSCs osteogenic differentiation by downregulating the expressions of Wnt5b, Fzd7, Dvl3 and β-catenin. Loss of QKI in BMSCs transplantation may provide a new strategy for the treatment of orthopedic diseases such as osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。