Uracil moieties in Plasmodium falciparum genomic DNA

恶性疟原虫基因组 DNA 中的尿嘧啶部分

阅读:5
作者:Petra Molnár, Lívia Marton, Richard Izrael, Hajnalka L Pálinkás, Beáta G Vértessy

Abstract

Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine-replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base-excision repair potential of P. falciparum to deal with uracil-DNA repair. We find approximately 7-10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild-type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil-DNA repair relies on one single uracil-DNA glycosylase and proceeds through the long-patch base-excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。