Cytochrome c autocatalyzed carbonylation in the presence of hydrogen peroxide and cardiolipins

细胞色素 c 在过氧化氢和心磷脂存在下自催化羰基化

阅读:9
作者:Uladzimir Barayeu, Mike Lange, Lucía Méndez, Jürgen Arnhold, Oleg I Shadyro, Maria Fedorova, Jörg Flemmig

Abstract

Cytochrome c (cyt c) is a small hemoprotein involved in electron shuttling in the mitochondrial respiratory chain and is now also recognized as an important mediator of apoptotic cell death. Its role in inducing programmed cell death is closely associated with the formation of a complex with the mitochondrion-specific phospholipid cardiolipin (CL), leading to a gain of peroxidase activity. However, the molecular mechanisms behind this gain and eventual cyt c autoinactivation via its release from mitochondrial membranes remain largely unknown. Here, we examined the kinetics of the H2O2-mediated peroxidase activity of cyt c both in the presence and absence of tetraoleoyl cardiolipin (TOCL)- and tetralinoleoyl cardiolipin (TLCL)-containing liposomes to evaluate the role of cyt c-CL complex formation in the induction and stimulation of cyt c peroxidase activity. Moreover, we examined peroxide-mediated cyt c heme degradation to gain insights into the mechanisms by which cyt c self-limits its peroxidase activity. Bottom-up proteomics revealed >50 oxidative modifications on cyt c upon peroxide reduction. Of note, one of these by-products was the Tyr-based "cofactor" trihydroxyphenylalanine quinone (TPQ) capable of inducing deamination of Lys ϵ-amino groups and formation of the carbonylated product aminoadipic semialdehyde. In view of these results, we propose that autoinduced carbonylation, and thus removal of a positive charge in Lys, abrogates binding of cyt c to negatively charged CL. The proposed mechanism may be responsible for release of cyt c from mitochondrial membranes and ensuing inactivation of its peroxidase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。