Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry

磷酸化蛋白质组学揭示了保守的运动刺激信号和 AMPK 对钙池操纵钙内流的调控

阅读:10
作者:Marin E Nelson, Benjamin L Parker, James G Burchfield, Nolan J Hoffman, Elise J Needham, Kristen C Cooke, Timur Naim, Lykke Sylow, Naomi Xy Ling, Deanne Francis, Dougall M Norris, Rima Chaudhuri, Jonathan S Oakhill, Erik A Richter, Gordon S Lynch, Jacqueline Stöckli, David E James

Abstract

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。