Dual Detection of the Chytrid Fungi Batrachochytrium spp. with an Enhanced Environmental DNA Approach

使用增强型环境 DNA 方法对壶菌 Batrachochytrium spp. 进行双重检测

阅读:12
作者:David Lastra González, Vojtech Baláž, Jiří Vojar, Petr Chajma

Abstract

Environmental DNA (eDNA) is becoming an indispensable tool in biodiversity monitoring, including the monitoring of invasive species and pathogens. Aquatic chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are major threats to amphibians. However, the use of eDNA for detecting these pathogens has not yet become widespread, due to technological and economic obstacles. Using the enhanced eDNA approach (a simple and cheap sampling protocol) and the universally accepted qPCR assay, we confirmed the presence of Bsal and Bd in previously identified sites in Spain, including four sites that were new for Bsal. The new approach was successfully tested in laboratory conditions using manufactured gene fragments (gBlocks) of the targeted DNA sequence. A comparison of storage methods showed that samples kept in ethanol had the best DNA yield. Our results showed that the number of DNA copies in the Internal Transcribed Spacer region was 120 copies per Bsal cell. Eradication of emerging diseases requires quick and cost-effective solutions. We therefore performed cost-efficiency analyses of standard animal swabbing, a previous eDNA approach, and our own approach. The procedure presented here was evaluated as the most cost-efficient. Our findings will help to disseminate information about efforts to prevent the spread of chytrid fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。