Prevention of cross-talk in conserved regulatory systems: identification of specificity determinants in RNA-binding anti-termination proteins of the BglG family

预防保守调节系统中的串扰:鉴定 BglG 家族 RNA 结合抗终止蛋白中的特异性决定因素

阅读:13
作者:Sebastian Hübner, Nathalie Declerck, Christine Diethmaier, Dominique Le Coq, Stephane Aymerich, Jörg Stülke

Abstract

Each family of signal transduction systems requires specificity determinants that link individual signals to the correct regulatory output. In Bacillus subtilis, a family of four anti-terminator proteins controls the expression of genes for the utilisation of alternative sugars. These regulatory systems contain the anti-terminator proteins and a RNA structure, the RNA anti-terminator (RAT) that is bound by the anti-terminator proteins. We have studied three of these proteins (SacT, SacY, and LicT) to understand how they can transmit a specific signal in spite of their strong structural homology. A screen for random mutations that render SacT capable to bind a RNA structure recognized by LicT only revealed a substitution (P26S) at one of the few non-conserved residues that are in contact with the RNA. We have randomly modified this position in SacT together with another non-conserved RNA-contacting residue (Q31). Surprisingly, the mutant proteins could bind all RAT structures that are present in B. subtilis. In a complementary approach, reciprocal amino acid exchanges have been introduced in LicT and SacY at non-conserved positions of the RNA-binding site. This analysis revealed the key role of an arginine side-chain for both the high affinity and specificity of LicT for its cognate RAT. Introduction of this Arg at the equivalent position of SacY (A26) increased the RNA binding in vitro but also resulted in a relaxed specificity. Altogether our results suggest that this family of anti-termination proteins has evolved to reach a compromise between RNA binding efficacy and specific interaction with individual target sequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。