Composite Nanoscaffolds Modified with Bio-ceramic Nanoparticles (Zn2SiO4) Prompted Osteogenic Differentiation of Human Induced Pluripotent Stem Cells

用生物陶瓷纳米粒子 (Zn2SiO4) 改性的复合纳米支架促进人类诱导性多能干细胞的成骨分化

阅读:7
作者:Raheleh Halabian, Kaykhosro Moridi, Mohsen Korani, Marzieh Ghollasi

Abstract

Nanofiber scaffolds and bio-ceramic nanoparticles have been widely used in bone tissue engineering. The use of human- induced pluripotent stem cells (hiPSCs) on this scaffold can be considered as a new approach in the differentiation of bone tissue. In the present study, a polyaniline-gelatin-polycaprolactone (PANi-GEL-PCL) composite nanoscaffold was made by electrospinning and modified superficially by plasma method. The synthesized nanoscaffold was then coated with willemite's bio-ceramic nanoparticles (Zn2SiO4). The nanoscaffold's properties were studied by scanning electron microscopy (SEM). Also, nanoparticles characterization was carried out with SEM and dynamic light scattering. The growth and proliferation rate of cells on the synthesized nanoscaffold was examined by MTT assay. Subsequently, hiPSCs were cultured on murine fibroblast cells, incubated in embryoid bodies for 3 days, and placed on the nanoscaffolds. The differentiation potential of hiPSCs was investigated by the examination of common bone markers (e.g. alkaline phosphatase, calcium salt precipitation, and alizarin red test) using bone differentiation factors for 14 days. SEM showed the proper structure of electrospinned nanoscaffolds and coating of nanoparticles on the nanoscaffold surface. The results of MTT assay confirmed the growth and proliferation of cells and the biocompatibility of nanofibers. The results of bone indices also showed that differentiation on the composite nanoscaffold coated with willemite's bio-ceramic nanoparticles dramatically increased in comparison with other groups. Overall, this study demonstrated that PANi-GEL-PCL composite nanoscaffold with willemite's bio-ceramic nanoparticles is a suitable substrate for in vitro growth, proliferation, and differentiation of hiPSCs cells into osteoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。