Effects of exercise and doxorubicin on acute diaphragm neuromuscular transmission failure

运动和阿霉素对急性膈肌神经肌肉传递衰竭的影响

阅读:9
作者:Branden L Nguyen, Dryden R Baumfalk, Stephanie S Lapierre-Nguyen, Renjia Zhong, Vivian Doerr, Ryan N Montalvo, Lan Wei-LaPierre, Ashley J Smuder

Abstract

Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。