Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance

耐甲氧西林金黄色葡萄球菌 USA300 的基因组分析揭示了发病机制和耐药性之间的权衡

阅读:5
作者:Donghui Choe, Richard Szubin, Samira Dahesh, Suhyung Cho, Victor Nizet, Bernhard Palsson, Byung-Kwan Cho

Abstract

Staphylococcus aureus infection is a rising public health care threat. S. aureus is believed to have elaborate regulatory networks that orchestrate its virulence. Despite its importance, the systematic understanding of the transcriptional landscape of S. aureus is limited. Here, we describe the primary transcriptome landscape of an epidemic USA300 isolate of community-acquired methicillin-resistant S. aureus. We experimentally determined 1,861 transcription start sites with their principal promoter elements, including well-conserved -35 and -10 elements and weakly conserved -16 element and 5' untranslated regions containing AG-rich Shine-Dalgarno sequence. In addition, we identified 225 genes whose transcription was initiated from multiple transcription start sites, suggesting potential regulatory functions at transcription level. Along with the transcription unit architecture derived by integrating the primary transcriptome analysis with operon prediction, the measurement of differential gene expression revealed the regulatory framework of the virulence regulator Agr, the SarA-family transcriptional regulators, and β-lactam resistance regulators. Interestingly, we observed a complex interplay between virulence regulation, β-lactam resistance, and metabolism, suggesting a possible tradeoff between pathogenesis and drug resistance in the USA300 strain. Our results provide platform resource for the location of transcription initiation and an in-depth understanding of transcriptional regulation of pathogenesis, virulence, and antibiotic resistance in S. aureus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。