Background
G9a, a well-known methyltransferase, plays a vital role in biological processes. However, its role in corneal neovascularization (CoNV) remains unclear.
Results
In this study, we found that G9a was positively related to corneal alkali burn-induced injury. Inhibition of G9a with BIX 01294 (BIX) alleviated corneal injury, including oxidative stress and neovascularization in vivo models were assessed in hypoxia-stimulated angiogenesis and in a mouse model of alkali burn-induced CoNV. Human umbilical vein endothelial cells (HUVECs) were cultured under hypoxic conditions and different reoxygenation times to identify the molecular mechanisms involved in this process.
