Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling

过去的经历通过单胺能信号传导塑造性别二态神经元连接

阅读:7
作者:Emily A Bayer, Oliver Hobert

Abstract

Differences between female and male brains exist across the animal kingdom and extend from molecular to anatomical features. Here we show that sexually dimorphic anatomy, gene expression and function in the nervous system can be modulated by past experiences. In the nematode Caenorhabditis elegans, sexual differentiation entails the sex-specific pruning of synaptic connections between neurons that are shared by both sexes, giving rise to sexually dimorphic circuits in adult animals1. We discovered that starvation during juvenile stages is memorized in males to suppress the emergence of sexually dimorphic synaptic connectivity. These circuit changes result in increased chemosensory responsiveness in adult males following juvenile starvation. We find that an octopamine-mediated starvation signal dampens the production of serotonin (5-HT) to convey the memory of starvation. Serotonin production is monitored by a 5-HT1A serotonin receptor homologue that acts cell-autonomously to promote the pruning of sexually dimorphic synaptic connectivity under well-fed conditions. Our studies demonstrate how life history shapes neurotransmitter production, synaptic connectivity and behavioural output in a sexually dimorphic circuit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。