Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells

骨抑制素增强含 Zn2+ 离子的介孔玻璃支架在人类间充质干细胞中的生物活性

阅读:8
作者:C Heras, S Sanchez-Salcedo, D Lozano, J Peña, P Esbrit, M Vallet-Regi, A J Salinas

Significance

Mesoporous bioactive glasses (MBGs) are bioceramics whose unique properties make them excellent materials for bone tissue engineering. Physico-chemical characterization of MBGs as scaffolds made by rapid prototyping, doped with zinc (potential osteogenic, angiogenic and bactericidal ion) and loaded with osteostatin (osteogenic peptide) are described. These Zn-MBGs scaffolds showed 3D hierarchical meso-macroporous structure that enables to host and release osteostatin. When decorated with human mesenchymal stem cells (hMSCs), MBGs scaffoldsenriched with both zinc and osteostatin exhibited a synergistic effect to enhance hMSCs growth, and also hMSCs osteogenic differentiationwithout addition of other osteoblastic differentiation factors to the culture medium. This novel strategy has a great potential for use in bone tissue engineering.

Statement of significance

Mesoporous bioactive glasses (MBGs) are bioceramics whose unique properties make them excellent materials for bone tissue engineering. Physico-chemical characterization of MBGs as scaffolds made by rapid prototyping, doped with zinc (potential osteogenic, angiogenic and bactericidal ion) and loaded with osteostatin (osteogenic peptide) are described. These Zn-MBGs scaffolds showed 3D hierarchical meso-macroporous structure that enables to host and release osteostatin. When decorated with human mesenchymal stem cells (hMSCs), MBGs scaffoldsenriched with both zinc and osteostatin exhibited a synergistic effect to enhance hMSCs growth, and also hMSCs osteogenic differentiationwithout addition of other osteoblastic differentiation factors to the culture medium. This novel strategy has a great potential for use in bone tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。