Partner-assisted artificial selection of a secondary function for efficient bioremediation

合作伙伴协助人工选择次要功能以实现有效的生物修复

阅读:6
作者:Marco Zaccaria, Natalie Sandlin, Yoav Soen, Babak Momeni

Abstract

Microbial enzymes can address diverse challenges such as degradation of toxins. However, if the function of interest does not confer a sufficient fitness effect on the producer, the enzymatic function cannot be improved in the host cells by a conventional selection scheme. To overcome this limitation, we propose an alternative scheme, termed "partner-assisted artificial selection" (PAAS), wherein the population of enzyme producers is assisted by function-dependent feedback from an accessory population. Simulations investigating the efficiency of toxin degradation reveal that this strategy supports selection of improved degradation performance, which is robust to stochasticity in the model parameters. We observe that conventional considerations still apply in PAAS: more restrictive bottlenecks lead to stronger selection but add uncertainty. Overall, we offer a guideline for successful implementation of PAAS and highlight its potentials and limitations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。