Cosolvents in Self-Emulsifying Drug Delivery Systems (SEDDS): Do They Really Solve Our Solubility Problems?

自乳化药物输送系统(SEDDS)中的共溶剂:它们真的能解决我们的溶解度问题吗?

阅读:5
作者:Arne Matteo Jörgensen, Julian David Friedl, Richard Wibel, Joseph Chamieh, Hervé Cottet, Andreas Bernkop-Schnürch

Abstract

The aim of this study was to investigate the fate and the impact of cosolvents in self-emulsifying drug delivery systems (SEDDS). Three different SEDDS comprising the cosolvents DMSO (FD), ethanol (FE), and benzyl alcohol (FBA) as well as the corresponding formulations without these cosolvents (FD0, FE0, and FBA0) were developed. Mean droplet size, polydispersity index (PDI), ζ potential, stability, and emulsification time were determined. Cosolvent release studies were performed via the dialysis membrane method and Taylor dispersion analysis (TDA). Furthermore, the impact of cosolvent utilization on payloads in SEDDS was examined using quinine as a model drug. SEDDS with and without a cosolvent showed no significant differences in droplet size, PDI, and ζ potential. The emulsification time was 3-fold (FD0), 80-fold (FE0), and 7-fold (FBA0) longer due to the absence of the cosolvents. Release studies in demineralized water provided evidence for an immediate and complete release of DMSO, ethanol, and benzyl alcohol. TDA confirmed this result. Moreover, a 1.4-fold (FD), 2.91-fold (FE), and 2.17-fold (FBA) improved payload of the model drug quinine in the selected SEDDS preconcentrates was observed that dropped after emulsification within 1-5 h due to drug precipitation. In parallel, the quinine concentrations decreased until reaching the same levels of the corresponding SEDDS without cosolvents. Due to the addition of hydrophilic cosolvents, the emulsifying properties of SEDDS are strongly improved. As hydrophilic cosolvents are immediately released from SEDDS during the emulsification process, however, their drug solubilizing properties in the resulting oily droplets are very limited.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。