Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels

去除膜脂的磷酸化头部基团可固定 K+ 通道的电压传感器

阅读:5
作者:Yanping Xu, Yajamana Ramu, Zhe Lu

Abstract

A fundamental question about the gating mechanism of voltage-activated K+ (Kv) channels is how five positively charged voltage-sensing residues in the fourth transmembrane segment are energetically stabilized, because they operate in a low-dielectric cell membrane. The simplest solution would be to pair them with negative charges. However, too few negatively charged channel residues are positioned for such a role. Recent studies suggest that some of the channel's positively charged residues are exposed to cell membrane phospholipids and interact with their head groups. A key question nevertheless remains: is the phospho-head of membrane lipids necessary for the proper function of the voltage sensor itself? Here we show that a given type of Kv channel may interact with several species of phospholipid and that enzymatic removal of their phospho-head creates an insuperable energy barrier for the positively charged voltage sensor to move through the initial gating step(s), thus immobilizing it, and also raises the energy barrier for the downstream step(s).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。