Tanshinone IIA reduces AQP4 expression and astrocyte swelling after OGD/R by inhibiting the HMGB1/RAGE/NF-κB/IL-6 pro-inflammatory axis

丹参酮 IIA 通过抑制 HMGB1/RAGE/NF-κB/IL-6 促炎轴减少 OGD/R 后的 AQP4 表达和星形胶质细胞肿胀

阅读:7
作者:Zhaohua Tang #, Gang Yang #, Zhengbu Liao, Feilan Chen, Song Chen, Wentao Wang, Gang Huo, Xiaochuan Sun, Xiaoshu Wang

Abstract

This study aimed to investigate the role of tanshinone IIA (TSO IIA) in astrocytic swelling caused by ischemia-reperfusion-like injury in an in vitro model and the molecular mechanisms underlying this effect. Primary brain astrocytes were cultured under conditions of glucose and oxygen deprivation and reoxygenation (OGD/R). The study explored the effects of TSO IIA treatment on cell swelling and injury and the protein levels of aquaporin 4 (AQP4) in the plasma membrane. It then examined the involvement of the high-mobility group box protein 1 (HMGB1)/receptors for advanced-glycation end products (RAGE)/nuclear factor-kappa B (NF-κB)/interleukin-6 (IL-6) pro-inflammatory axis in TSO IIA-mediated protection. The treatment with TSO IIA alleviated OGD/R-induced astrocytic swelling and the overclustering of AQP4 protein in the plasma membrane. In addition, TSO IIA significantly reduced the overexpression of HMGB1 and the high levels of the NF-κB protein in the nucleus and of the IL-6 protein in the cytoplasm and extracellular media induced by OGD/R. The combination of TSO IIA and recombinant HMGB1 reversed these effects. The inhibition of the RAGE, the receptor of HMGB1, induced results similar to those of TSO IIA. In addition, exogenous IL-6 reversed TSO IIA-mediated effect on AQP4 overclustering and cell swelling. TSO IIA significantly reduced astrocyte swelling after OGD/R injury in vitro, via blocking the activation of the HMGB1/RAGE/NF-κB/IL-6 pro-inflammatory axis and thereby decreasing the expression of AQP4 in the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。