An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways

Sp1 转录因子协调 caspase 依赖性和不依赖性的凋亡途径

阅读:6
作者:Takashi Hirose, H Robert Horvitz

Abstract

During animal development, the proper regulation of apoptosis requires the precise spatial and temporal execution of cell-death programs, which can include both caspase-dependent and caspase-independent pathways. Although the mechanisms of caspase-dependent and -independent cell killing have been examined extensively, how these pathways are coordinated within a single cell that is fated to die is unknown. Here we show that the Caenorhabditis elegans Sp1 transcription factor SPTF-3 specifies the programmed cell deaths of at least two cells-the sisters of the pharyngeal M4 motor neuron and the AQR sensory neuron-by transcriptionally activating both caspase-dependent and -independent apoptotic pathways. SPTF-3 directly drives the transcription of the gene egl-1, which encodes a BH3-only protein that promotes apoptosis through the activation of the CED-3 caspase. In addition, SPTF-3 directly drives the transcription of the AMP-activated protein kinase-related gene pig-1, which encodes a protein kinase and functions in apoptosis of the M4 sister and AQR sister independently of the pathway that activates CED-3 (refs 4, 5). Thus, a single transcription factor controls two distinct cell-killing programs that act in parallel to drive apoptosis. Our findings reveal a bivalent regulatory node for caspase-dependent and -independent pathways in the regulation of cell-type-specific apoptosis. We propose that such nodes might act as features of a general mechanism for regulating cell-type-specific apoptosis and could be therapeutic targets for diseases involving the dysregulation of apoptosis through multiple cell-killing mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。