Microstructured Elastomer-PEG Hydrogels via Kinetic Capture of Aqueous Liquid-Liquid Phase Separation

通过动态捕获水性液-液相分离制备微结构弹性体-PEG 水凝胶

阅读:8
作者:Hang Kuen Lau, Alexandra Paul, Ishnoor Sidhu, Linqing Li, Chandran R Sabanayagam, Sapun H Parekh, Kristi L Kiick

Abstract

Heterogeneous hydrogels with desired matrix complexity are studied for a variety of biomimetic materials. Despite the range of such microstructured materials described, few methods permit independent control over microstructure and microscale mechanics by precisely controlled, single-step processing methods. Here, a phototriggered crosslinking methodology that traps microstructures in liquid-liquid phase-separated solutions of a highly elastomeric resilin-like polypeptide (RLP) and poly(ethylene glycol) (PEG) is reported. RLP-rich domains of various diameters can be trapped in a PEG continuous phase, with the kinetics of domain maturation dependent on the degree of acrylation. The chemical composition of both hydrogel phases over time is assessed via in situ hyperspectral coherent Raman microscopy, with equilibrium concentrations consistent with the compositions derived from NMR-measured coexistence curves. Atomic force microscopy reveals that the local mechanical properties of the two phases evolve over time, even as the bulk modulus of the material remains constant, showing that the strategy permits control of mechanical properties on micrometer length scales, of relevance in generating mechanically robust materials for a range of applications. As one example, the successful encapsulation, localization, and survival of primary cells are demonstrated and suggest the potential application of phase-separated RLP-PEG hydrogels in regenerative medicine applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。