Histone H3 Ser57 and Thr58 phosphorylation in the brain of 5XFAD mice

5XFAD 小鼠脑内组蛋白 H3 Ser57 和 Thr58 磷酸化

阅读:7
作者:Kyle W Anderson, Natalia Mast, Irina A Pikuleva, Illarion V Turko

Abstract

Alzheimer's disease has been shown to have a global reduction in gene expression, called an epigenetic blockade, which may be regulated by histone post-translational modifications. Histone H3 has been shown to be highly regulated by phosphorylation. We, therefore, chose H3 for investigation of phosphorylation of the core sites serine-57 (S57) and threonine-58 (T58). Hemispheres of brains from a mouse model of rapid amyloid deposition (5XFAD) were used for measurement of S57 and T58 phosphorylation. Multiple reaction monitoring (MRM) was used to measure the level of phosphorylation, which was normalized to a non-modified "housekeeping" peptide of H3. S57 phosphorylation was decreased by 40%, T58 phosphorylation was decreased by 45%, and doubly phosphorylated S57pT58p was decreased by 30% in 5XFAD brain in comparison to C57BL/6J age- and sex-matched wild type controls. Amyloid-β (Aβ) and amyloid precursor protein were also measured to confirm that 5XFAD mice produced high levels of Aβ. Decreased phosphorylation of these sites in close proximity to DNA may lead to stabilization of DNA-histone interactions and a condensed chromatin state, consistent with the epigenetic blockade associated with AD. Our findings of H3 sites S57 and T58 exhibiting lower levels of phosphorylation in 5XFAD model compared to wild type control implicate these sites in the epigenetic blockade in neurodegeneration pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。