Exogenous, but not Endogenous Nitric Oxide Inhibits Adhesion Molecule Expression in Human Endothelial Cells

外源性而非内源性一氧化氮抑制人内皮细胞粘附分子表达

阅读:9
作者:Jin Qian, David J R Fulton

Abstract

Nitric oxide (NO) has many beneficial actions on the vascular wall including suppression of inflammation. The mechanism(s) by which NO antagonizes cytokine signaling are poorly understood, but are thought to involve inhibition of the pro-inflammatory transcription factor, NF-κB. NO represses nuclear translocation of NF-κB via the S-nitrosylation of its subunits which decreases the expression of target genes including adhesion molecules. In previous studies, we have shown that the intracellular location of endothelial nitric oxide synthase (eNOS) can influence the amount of NO produced and that NO levels are paramount in regulating the S-nitrosylation of target proteins. The purpose of the current study was to investigate the significance of subcellular eNOS to NF-κB signaling induced by pro-inflammatory cytokines in human aortic endothelial cells (HAECs). We found that in HAECs stimulated with TNFα, L-NAME did not influence the expression of intercellular adhesion molecule 1 (ICAM-1) or vascular cell adhesion molecular 1 (VCAM-1). In eNOS "knock down" HAECs reconstituted with either plasma membrane or Golgi restricted forms of eNOS, there was no significant effect on the activation of the NF-κB pathway over different times and concentrations of TNFα. Similarly, the endogenous production of NO did not influence the phosphorylation of IκBα. In contrast, higher concentrations of NO derived from the use of the exogenous NO donor, DETA NONOate, effectively suppressed the expression of ICAM-1/VCAM-1 in response to TNFα and induced greater S-nitrosylation of IKKβ and p65. Collectively these results suggest that neither endogenous eNOS nor eNOS location is an important influence on inflammatory signaling via the NF-κB pathway and that higher NO concentrations are required to suppress NF-κB in HAECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。