Polysulfides link H2S to protein thiol oxidation

多硫化物将 H2S 与蛋白质硫醇氧化联系起来

阅读:9
作者:Romy Greiner, Zoltán Pálinkás, Katrin Bäsell, Dörte Becher, Haike Antelmann, Péter Nagy, Tobias P Dick

Aims

Hydrogen sulfide (H2S) is suggested to act as a gaseous signaling molecule in a variety of physiological processes. Its molecular mechanism of action was proposed to involve protein S-sulfhydration, that is, conversion of cysteinyl thiolates (Cys-S(-)) to persulfides (Cys-S-S(-)). A central and unresolved question is how H2S-that is, a molecule with sulfur in its lowest possible oxidation state (-2)-can lead to oxidative thiol modifications.

Conclusion

This study suggests that the effects that have been attributed to H2S in previous reports may in fact have been mediated by polysulfides. It also supports the notion that sulfane sulfur rather than sulfide is the actual in vivo agent of H2S signaling.

Results

Using the lipid phosphatase PTEN as a model protein, we find that the "H2S donor" sodium hydrosulfide (NaHS) leads to very rapid reversible oxidation of the enzyme in vitro. We identify polysulfides formed in NaHS solutions as the oxidizing species, and present evidence that sulfane sulfur is added to the active site cysteine. Polysulfide-mediated oxidation of PTEN was induced by all "H2S donors" tested, including sodium sulfide (Na2S), gaseous H2S, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137). Moreover, we show that polysulfides formed in H2S solutions readily modify PTEN inside intact cells. Innovation: Our results shed light on the previously unresolved question of how H2S leads to protein thiol oxidation, and suggest that polysulfides formed in solutions of H2S mediate this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。