The anti-parkinsonian drug zonisamide reduces neuroinflammation: Role of microglial Nav 1.6

抗帕金森病药物唑尼沙胺可减轻神经炎症:小胶质细胞 Nav 1.6 的作用

阅读:10
作者:Muhammad M Hossain, Blair Weig, Kenneth Reuhl, Marla Gearing, Long-Jun Wu, Jason R Richardson

Abstract

Parkinson's disease (PD), the second most common age-related progressive neurodegenerative disorder, is characterized by dopamine depletion and the loss of dopaminergic (DA) neurons with accompanying neuroinflammation. Zonisamide is an-anti-convulsant drug that has recently been shown to improve clinical symptoms of PD through its inhibition of monoamine oxidase B (MAO-B). However, zonisamide has additional targets, including voltage-gated sodium channels (Nav), which may contribute to its reported neuroprotective role in preclinical models of PD. Here, we report that Nav1.6 is highly expressed in microglia of post-mortem PD brain and of mice treated with the parkinsonism-inducing neurotoxin MPTP. Administration of zonisamide (20 mg/kg, i.p. every 4 h × 3) following a single injection of MPTP (12.5 mg/kg, s.c.) reduced microglial Nav 1.6 and microglial activation in the striatum, as indicated by Iba-1 staining and mRNA expression of F4/80. MPTP increased the levels of the pro-inflammatory cytokine TNF-α and gp91phox, and this was significantly reduced by zonisamide. Together, these findings suggest that zonisamide may reduce neuroinflammation through the down-regulation of microglial Nav 1.6. Thus, in addition to its effects on parkinsonian symptoms through inhibition of MAO-B, zonisamide may have disease modifying potential through the inhibition of Nav 1.6 and neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。