Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: an in-vivo experimental study

低压缺氧暴露过程中人外周白细胞转录因子的调控:体内实验研究

阅读:8
作者:Sandro Malacrida, Alessandra Giannella, Giulio Ceolotto, Carlo Reggiani, Alessandra Vezzoli, Simona Mrakic-Sposta, Sarah Moretti, Rachel Turner, Marika Falla, Hermann Brugger, Giacomo Strapazzon

Abstract

High altitude is a natural laboratory, within which the clinical study of human physiological response to hypobaric hypoxia (HH) is possible. Failure in the response results in progressive hypoxemia, inflammation and increased tissue oxidative stress (OxS). Thus, investigating temporal changes in key transcription factors (TFs) HIF-1α, HIF-2α, NF-κB and NRF2 mRNA levels, relative to OxS and inflammatory markers, may reveal molecular targets which contrast deleterious effects of hypoxia. Biological samples and clinical data from 15 healthy participants were collected at baseline and after rapid, passive ascent to 3830 m (24 h and 72 h). Gene expression was assessed by qPCR and ROS generation was determined by EPR spectroscopy. Oxidative damage and cytokine levels were estimated by immuno or enzymatic methods. Hypoxia transiently enhanced HIF-1α mRNA levels over time reaching a peak after 24 h. Whereas, HIF-2α and NRF2 mRNA levels increased over time. In contrast, the NF-κB mRNA levels remained unchanged. Plasma levels of IL-1β and IL-6 also remained within normal ranges. ROS production rate and markers of OxS damage were significantly increased over time. The analysis of TF-gene expression suggests that HIF-1α is a lead TF during sub-acute HH exposure. The prolongation of the HH exposure led to a switch between HIF-1α and HIF-2α/NRF2, suggesting the activation of new pathways. These results provide new insights regarding the temporal regulation of TFs, inflammatory state, and ROS homeostasis involved in human hypoxic response, potentially also relevant to the mediation of diseases that induce a hypoxic state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。