Leptin treatment prevents impaired hypoglycemic counterregulation induced by exposure to severe caloric restriction or exposure to recurrent hypoglycemia

瘦素治疗可预防因严重热量限制或反复低血糖引起的低血糖反调节受损

阅读:5
作者:Marina A DuVall, Carolyn E Coulter, Jasmin L Gosey, Matthew J Herrera, Cristal M Hill, Rajvi R Jariwala, Lauren E Maisano, Laura A Moldovan, Christopher D Morrison, Ngozi V Nwabueze, Hunter X Sikaffy, David H McDougal

Abstract

Hypoglycemia-associated autonomic failure (HAAF) is a maladaptive failure in glucose counterregulation in persons with diabetes (PWD) that is caused by recurrent exposure to hypoglycemia. The adipokine leptin is known to regulate glucose homeostasis, and leptin levels fall following exposure to recurrent hypoglycemia. Yet, little is known regarding how reduced leptin levels influence glucose counterregulation, or if low leptin levels are involved in the development of HAAF. The purpose of this study was to determine the effect of hypoleptinemia on the neuroendocrine responses to hypoglycemia. We utilized two separate experimental paradigms known to induce a hypoleptinemic state: 60% caloric restriction (CR) in mice and three days of recurrent hypoglycemia (3dRH) in rats. A sub-set of animals were also treated with leptin (0.5-1.0 μg/g) during the CR or 3dRH periods. Neuroendocrine responses to hypoglycemia were assessed 60 min following an IP insulin injection on the terminal day of the paradigms. CR mice displayed defects in hypoglycemic counterregulation, indicated by significantly lower glucagon levels relative to controls, 13.5 pmol/L (SD 10.7) versus 64.7 pmol/L (SD 45) (p = 0.002). 3dRH rats displayed reduced epinephrine levels relative to controls, 1900 pg/mL (SD 1052) versus 3670 pg/mL (SD 780) (p = 0.030). Remarkably, leptin treatment during either paradigm completely reversed this effect by normalizing glucagon levels in CR mice, 78.0 pmol/L (SD 47.3) (p = 0.764), and epinephrine levels in 3dRH rats, 2910 pg/mL (SD 1680) (p = 0.522). These findings suggest that hypoleptinemia may be a key signaling event driving the development of HAAF and that leptin treatment may prevent the development of HAAF in PWD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。