Unraveling the Impact of pH on the Crystallization of Pharmaceutical Proteins: A Case Study of Human Insulin

揭示 pH 对药物蛋白结晶的影响:以人类胰岛素为例

阅读:4
作者:Frederik J Link, Jerry Y Y Heng

Abstract

One of the most crucial parameters in protein crystallization is pH, as it governs the protein's electrostatic interactions. However, the fundamental role of pH on crystallization still remains unknown. Here, we systematically investigated the crystallization of human insulin (isoelectric point 5.3) at various pHs between 6.0 and 6.7 at different supersaturation ratios, up to 20.9. Our results demonstrate that the pH has an opposing effect on solubility and nucleation rate as a shift in pH toward a more basic milieu increases the solubility by 5-fold while the onset of nucleation was accelerated by a maximum of 8.6-fold. To shed light on this opposing effect, we evaluated the protein-protein interactions as a function of pH by measuring the second virial coefficient and hydrodynamic radius and showed that a change in pH of less than one unit has no significant impact on the protein-protein interactions. As it is widely understood that the increase in protein solubility as a function of pH is due to the increase in the repulsive electrostatic interactions, we have demonstrated that the increase in insulin solubility and decrease in the onset of nucleation are independent of the protein-protein interactions. We hypothesize that it is the electrostatic interactions between both ions and solvent molecules and the protein residues that are governing the crystallization of human insulin. The findings of this study will be of crucial importance for the design of novel crystallization pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。