Is S-nitrosocysteine a true surrogate for nitric oxide?

S-亚硝基半胱氨酸是一氧化氮的真正替代品吗?

阅读:6
作者:Jason R Hickok, Divya Vasudevan, Gregory R J Thatcher, Douglas D Thomas

Abstract

S-Nitrosothiol (RSNO) formation is one manner by which nitric oxide (•NO) exerts its biological effects. There are several proposed mechanisms of formation of RSNO in vivo: auto-oxidation of •NO, transnitrosation, oxidative nitrosylation, and from dinitrosyliron complexes (DNIC). Both free •NO, generated by •NO donors, and S-nitrosocysteine (CysNO) are widely used to study •NO biology and signaling, including protein S-nitrosation. It is assumed that the cellular effects of both compounds are analogous and indicative of in vivo •NO biology. A quantitative comparison was made of formation of DNIC and RSNO, the major •NO-derived cellular products. In RAW 264.7 cells, both •NO and CysNO were metabolized, leading to rapid intracellular RSNO and DNIC formation. DNIC were the dominant products formed from physiologic •NO concentrations, however, and RSNO were the major product from CysNO treatment. Chelatable iron was necessary for DNIC assembly from either •NO or CysNO, but not for RSNO formation. These profound differences in RSNO and DNIC formation from •NO and CysNO question the use of CysNO as a surrogate for physiologic •NO. Researchers designing experiments intended to elucidate the biological signaling mechanisms of •NO should be aware of these differences and should consider the biological relevance of the use of exogenous CysNO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。