Microscopic rearrangement of bound minor groove binders detected by NMR

核磁共振检测结合小沟结合物的微观重排

阅读:6
作者:Michael Rettig, Markus W Germann, Mohamed A Ismail, Adalgisa Batista-Parra, Manoj Munde, David W Boykin, W David Wilson

Abstract

Thermodynamic and structural studies are commonly utilized to optimize small molecules for specific DNA interactions, and, thus, a significant amount of binding data is available. However, the dynamic processes that are involved in minor groove complex formation and maintenance are not fully understood. To help define the processes involved, we have conducted 1D and 2D NMR in conjunction with biosensor-SPR experiments with a variety of compounds and symmetric, as well as asymmetric, AT tract DNA sequences. Surprisingly, the NMR data clearly show exchange between equivalent binding sites for strongly binding compounds like netropsin and DB921 (Ka > 10(8) M(-1)) that does not involve dissociation off the DNA. A quantitative analysis of the data revealed that these bound exchange rates are indeed much faster than the macroscopic dissociation rates which were independently determined by biosensor-SPR. Additionally, we could show the existence of at least two 1:1 compound DNA complexes at the same site for the interaction of these compounds with an asymmetric DNA sequence. To explain this behavior we introduced a model in which the ligand is rapidly flipping between two orientations while in close association with the DNA. The ligand reorientation will contribute favorably to the binding entropy. As the potential of minor groove binders to form more than a single complex with asymmetric, as well as symmetric, duplexes is widely unknown, the consequences for binding thermodynamics and compound design are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。