Surface alterations and compound release from aligner attachments in vitro

体外矫正器附件的表面改变和化合物释放

阅读:5
作者:Anna Iliadi, Sevasti-Kiriaki Zervou, Despina Koletsi, Marc Schätzle, Anastasia Hiskia, Theodore Eliades, George Eliades

Aim

The aim of the present study was to assess the alterations in morphology, roughness, and composition of the surfaces of a conventional and a flowable composite attachment engaged with aligners, and to evaluate the release of resin monomers and their derivatives in an aqueous environment.

Conclusions

The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.

Methods

Zirconia tooth-arch frames (n = 20) and corresponding thermoformed PET-G aligners with bonded attachments comprising two composite materials (universal-C and flowable-F) were fabricated. The morphological features (stereomicroscopy), roughness (optical profilometry), and surface composition (ATR-FTIR) of the attachments were examined before and after immersion in water. To simulate intraoral use, the aligners were removed and re-seated to the frames four times per day for a 7-day immersion period. After testing, the eluents were analyzed by LC-MS/MS targeting the compounds Bis-GMA, UDMA, 2-HEMA, TEGDMA and BPA and by LC-HRMS for suspect screening of the leached dental material compounds and their degradation products.

Results

After testing, abrasion-induced defects were found on attachment surfaces such as scratches, marginal cracks, loss of surface texturing, and fractures. The morphological changes and debonding rate were greater in F. Comparisons (before-after testing) revealed a significantly lower Sc roughness parameter in F. The surface composition of the aligners after testing showed minor changes from the control, with insignificant differences in the degree of C = C conversion, except for few cases with strong evidence of hydrolytic degradation. Targeted analysis results revealed a significant difference in the compounds released between Days 1 and 7 in both materials. Insignificant differences were found when C was compared with F in both timeframes. Several degradation products were detected on Day 7, with a strong reduction in the concentration of the targeted compounds. Conclusions: The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。