Histone methyltransferases MLL2 and SETD1A/B play distinct roles in H3K4me3 deposition during the transition from totipotency to pluripotency

组蛋白甲基转移酶 MLL2 和 SETD1A/B 在从全能性向多能性的转变过程中对 H3K4me3 沉积起着不同的作用

阅读:5
作者:Jingjing Zhang #, Qiaoran Sun #, Liang Liu, Shichun Yang, Xia Zhang, Yi-Liang Miao, Xin Liu

Abstract

In early mammalian embryogenesis, a shift from non-canonical histone H3 lysine 4 trimethylation (H3K4me3) linked to transcriptional repression to canonical H3K4me3 indicating active promoters occurs during zygotic genome activation (ZGA). However, the mechanisms and roles of these H3K4me3 states in embryogenesis remain poorly understood. Our research reveals that the histone methyltransferase MLL2 is responsible for installing H3K4me3 (both non-canonical and canonical) in totipotent embryos, while a transition to SETD1A/B-deposited H3K4me3 occurs in pluripotent embryos. Interestingly, MLL2-mediated H3K4me3 operates independently of transcription, fostering a relaxed chromatin state conducive to totipotency rather than directly influencing transcription. Conversely, SETD1A/B-mediated H3K4me3, which depends on transcription, is crucial for facilitating expression of genes essential for pluripotency and pre-implantation development. Our findings highlight the role of the H3K4me3 transition, mediated by an MLL2-to-SETD1A/B relay mechanism, in the regulation of transition from totipotency to pluripotency during early embryogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。