Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7

骨形态发生蛋白 7 改善糖尿病引起的炎症介导的细胞焦亡、肌肉减少症和不良肌肉重塑

阅读:5
作者:Chandrakala Aluganti Narasimhulu, Dinender K Singla

Background

Diabetic myopathy involves hyperglycaemia and inflammation that causes skeletal muscle dysfunction; however, the potential cellular mechanisms that occur between hyperglycaemia and inflammation, which induces sarcopenia, and muscle dysfunction remain unknown. In this study, we investigated hyperglycaemia-induced inflammation mediating high-mobility group box 1 activation, which is involved in a novel form of cell death, pyroptosis, diabetic sarcopenia, atrophy, and adverse muscle remodelling. Furthermore, we investigated the therapeutic potential of bone morphogenetic protein-7 (BMP-7), an osteoporosis drug, to treat pyroptosis, and diabetic muscle myopathy.

Conclusions

In conclusion, we report for the first time that increased hyperglycaemia and inflammation involve cellular pyroptosis that induces significant muscle cell loss and adverse remodelling in diabetic myopathy. We also report that targeting pyroptosis with BMP-7 improves diabetic muscle pathophysiology and muscle function. These findings suggest that BMP-7 could be a potential therapeutic option to treat diabetic myopathy.

Methods

C57BL6 mice were treated with saline (control), streptozotocin (STZ), or STZ + BMP-7 to generate diabetic muscle myopathy. Diabetes was established by determining the increased levels of glucose. Then, muscle function was examined, and animals were sacrificed. Gastrocnemius muscle or blood samples were analysed for inflammation, pyroptosis, weight loss, muscle atrophy, and adverse structural remodelling of gastrocnemius muscle using histology, enzyme-linked immunosorbent assay, immunohistochemistry, western blotting, and reverse transcription polymerase chain reaction.

Results

A significant (P < 0.05) increase in hyperglycaemia leads to an increase in inflammasome (high-mobility group box 1, toll-like receptor-4, and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing protein 3) formation in diabetic muscle cells. Further analysis showed an up-regulation of the downstream pyroptotic pathway with significant (P < 0.05) number of positive muscle cells expressing pyroptosis-specific markers [caspase-1, interleukin (IL)-1β, IL-18, and gasdermin-D]. Pyroptotic cell death is involved in further increasing inflammation by releasing pro-inflammatory cytokine IL-6. Structural analysis showed the loss of muscle weight, decreased myofibrillar area, and increased fibrosis leading to muscle dysfunction. Consistent with this finding, BMP-7 attenuated hyperglycaemia (~50%), pyroptosis, inflammation, and diabetic adverse structural modifications as well as improved muscle function. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。