Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation

独特的心脏浦肯野纤维瞬时外向电流 β 亚基组成:与特发性心室颤动的潜在分子联系

阅读:6
作者:Ling Xiao, Tamara T Koopmann, Balázs Ördög, Pieter G Postema, Arie O Verkerk, Vivek Iyer, Kevin J Sampson, Gerard J J Boink, Maya A Mamarbachi, Andras Varro, Luc Jordaens, Jan Res, Robert S Kass, Arthur A Wilde, C R Bezzina, Stanley Nattel

Conclusions

These results point to a previously unknown central role of DPP6 in PF I(to), with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation.

Objective

To assess the potential role of DPP6 in PF I(to).

Results

Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle I(to) had similar density, but PF I(to) differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, I(to) density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K(+)-channel interacting β-subunit K(+)-channel interacting protein type-2, essential for normal expression of I(to) in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small I(to); I(to) amplitude was greatly enhanced by coexpression with K(+)-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K(+)-channel interacting protein type-2 failed to alter I(to) compared with Kv4.3/K(+)-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF I(to) composition) greatly enhanced I(to) compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that I(to) enhancement can greatly accelerate PF repolarization. Conclusions: These results point to a previously unknown central role of DPP6 in PF I(to), with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。