Copper foam supported g-C3N4-metal-organic framework bacteria biohybrid cathode catalyst for CO2 reduction in microbial electrosynthesis

铜泡沫负载 g-C3N4-金属有机骨架细菌生物混合阴极催化剂用于微生物电合成中 CO2 还原

阅读:7
作者:Md Tabish Noori, Mansi, Shashank Sundriyal, Vishal Shrivastav, Balendu Sekhar Giri, Marcin Holdynski, Wojciech Nogala, Umesh K Tiwari, Bhavana Gupta, Booki Min

Abstract

Microbial electrosynthesis (MES) presents a versatile approach for efficiently converting carbon dioxide (CO2) into valuable products. However, poor electron uptake by the microorganisms from the cathode severely limits the performance of MES. In this study, a graphitic carbon nitride (g-C3N4)-metal-organic framework (MOF) i.e. HKUST-1 composite was newly designed and synthesized as the cathode catalyst for MES operations. The physiochemical analysis such as X-ray diffraction, scanning electron microscopy (SEM), and X-ray fluorescence spectroscopy showed the successful synthesis of g-C3N4-HKUST-1, whereas electrochemical assessments revealed its enhanced kinetics for redox reactions. The g-C3N4-HKUST-1 composite displayed excellent biocompatibility to develop electroactive biohybrid catalyst for CO2 reduction. The MES with g-C3N4-HKUST-1 biohybrid demonstrated an excellent current uptake of 1.7 mA/cm2, which was noted higher as compared to the MES using g-C3N4 biohybrid (1.1 mA/cm2). Both the MESs could convert CO2 into acetic and isobutyric acid with a significantly higher yield of 0.46 g/L.d and 0.14 g/L.d respectively in MES with g-C3N4-HKUST-1 biohybrid and 0.27 g/L.d and 0.06 g/L.d, respectively in MES with g-C3N4 biohybrid. The findings of this study suggest that g-C3N4-HKUST-1 is a highly efficient catalytic material for biocathodes in MESs to significantly enhance the CO2 conversion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。