Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase

组蛋白去乙酰化酶 3 通过逆转阿司匹林诱导的内皮型一氧化氮合酶赖氨酸乙酰化来拮抗阿司匹林刺激的内皮型一氧化氮生成

阅读:7
作者:Saet-Byel Jung, Cuk-Seong Kim, Asma Naqvi, Tohru Yamamori, Ilwola Mattagajasingh, Timothy A Hoffman, Marsha P Cole, Ajay Kumar, Jeremy S Dericco, Byeong-Hwa Jeon, Kaikobad Irani

Conclusions

Lysine acetylation of eNOS is a posttranslational protein modification supporting low-dose aspirin-induced vasoprotection. HDAC3, by deacetylating aspirin-acetylated eNOS, antagonizes aspirin-stimulated endothelial production of NO.

Objective

To determine the role of lysine acetylation of endothelial nitric oxide synthase (eNOS) in the regulation of endothelial NO production by low-dose aspirin and to examine whether the lysine deacetylase histone deacetylase (HDAC)3 antagonizes the effect of low-dose aspirin on endothelial NO production by reversing acetylation of functionally critical eNOS lysine residues.

Results

Low concentrations of aspirin induce lysine acetylation of eNOS, stimulating eNOS enzymatic activity and endothelial NO production in a cyclooxygenase-1-independent fashion. Low-dose aspirin in vivo also increases bioavailable vascular NO in an eNOS-dependent and cyclooxygenase-1-independent manner. Low-dose aspirin promotes the binding of eNOS to calmodulin. Lysine 609 in the calmodulin autoinhibitory domain of bovine eNOS mediates aspirin-stimulated binding of eNOS to calmodulin and eNOS-derived NO production. HDAC3 inhibits aspirin-stimulated (1) lysine acetylation of eNOS, (2) eNOS enzymatic activity, (3) eNOS-derived NO, and (4) binding of eNOS to calmodulin. Conversely, downregulation of HDAC3 promotes lysine acetylation of eNOS and endothelial NO generation. Conclusions: Lysine acetylation of eNOS is a posttranslational protein modification supporting low-dose aspirin-induced vasoprotection. HDAC3, by deacetylating aspirin-acetylated eNOS, antagonizes aspirin-stimulated endothelial production of NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。