Discovery and engineering of AiEvo2, a novel Cas12a nuclease for human gene editing applications

发现和设计用于人类基因编辑应用的新型 Cas12a 核酸酶 AiEvo2

阅读:4
作者:Allison Sharrar, Luisa Arake de Tacca, Zuriah Meacham, Johanna Staples-Ager, Trevor Collingwood, David Rabuka, Michael Schelle

Abstract

The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here, we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We engineer the nuclease (termed AiEvo2) for increased specificity, protospacer adjacent motif recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington's patient-derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 chimeric antigen receptor-T-cell therapy from primary human T cells using multiplexed simultaneous editing and chimeric antigen receptor insertion. To further ensure precise editing, we engineered an anti-CRISPR protein to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel engineered anti-CRISPR protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。