A comparative analysis of the nervous system of cheilostome bryozoans

唇口苔藓虫神经系统的比较分析

阅读:8
作者:Jakob Prömer, Andy Sombke, Thomas Schwaha

Background

Bryozoans are sessile aquatic suspension feeders in mainly marine, but also freshwater habitats. Most species belong to the marine and calcified Cheilostomata. Since this taxon remains mostly unstudied regarding its neuroanatomy, the focus of this study is on the characterization and ground pattern reconstruction of the autozooidal nervous system based on six representatives.

Conclusions

The present results thus represent the gymnolaemate situation. Innervation of the tentacle sheath and visceral tract by fewer neurite bundles and tentacular innervation by four to six tentacle neurite bundles support cyclostomes as sister taxon to gymnolaemates. Phylactolaemates feature fewer distinct neurite bundles in visceral- and tentacle sheath innervation, which always split in nervous plexus, and their tentacles have six neurite bundles. Thus, this study supports phylactolaemates as sistergroup to myolaemates.

Results

A common neuronal innervation pattern is present in the investigated species: a cerebral ganglion is located at the base of the lophophore, from where neurite bundles embrace the mouth opening to form a circumoral nerve ring. Four neurite bundles project from the cerebral ganglion to innervate peripheral areas, such as the body wall and parietal muscles via the tentacle sheath. Five neurite bundles comprise the main innervation of the visceral tract. Four neurite bundles innervate each tentacle via the circumoral nerve ring. Mediofrontal tentacle neurite bundles emerge directly from the nerve ring. Two laterofrontal- and one abfrontal tentacle neurite bundles emanate from radial neurite bundles, which originate from the cerebral ganglion and circumoral nerve ring in between two adjacent tentacles. The radial neurite bundles terminate in intertentacular pits and give rise to one abfrontal neurite bundle at the oral side and two abfrontal neurite bundles at the anal side. Similar patterns are described in ctenostome bryozoans. Conclusions: The present results thus represent the gymnolaemate situation. Innervation of the tentacle sheath and visceral tract by fewer neurite bundles and tentacular innervation by four to six tentacle neurite bundles support cyclostomes as sister taxon to gymnolaemates. Phylactolaemates feature fewer distinct neurite bundles in visceral- and tentacle sheath innervation, which always split in nervous plexus, and their tentacles have six neurite bundles. Thus, this study supports phylactolaemates as sistergroup to myolaemates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。