PPARGC1A regulates transcriptional control of mitochondrial biogenesis in early bovine embryos

PPARGC1A 调控早期牛胚胎线粒体生物合成的转录控制

阅读:6
作者:Muhammad Idrees #, Zaheer Haider #, Chalani Dilshani Perera, Safeer Ullah, Seo-Hyeon Lee, Seung Eun Lee, Sung-Sik Kang, Sung Woo Kim, Il-Keun Kong

Abstract

Extensive mitochondrial replication during oogenesis and its role in oocyte maturation and fertilization indicate that the amount of mitochondrial DNA (mtDNA) may play a significant role in early embryonic development. Early embryos express peroxisome proliferator-activated receptor gamma co-activator alpha (PPARGC1A/PGC-1a), a protein essential for mitochondrial biogenesis. This study investigated the role of PGC-1α from a single-cell zygotic stage to day-8 bovine blastocyst and the effect of PGC-1a knockdown (KD) on embryo mitochondria and development. PGC-1α KD via siRNA injection into single-cell zygotes does not substantially affect embryonic cleavage up to the morula stage but considerably reduces blastocyst development (18.42%) and hatching than the control (32.81%). PGC-1α regulates transcription of the gene encoding mitochondrial transcription factor A (TFAM), and immunofluorescence analysis indicated significantly lower TFAM expression in the 16-cell KD embryos and day-8 KD blastocysts. Reduction in NRF1 protein's nuclear localization in bovine blastomeres was also observed in PGC-1α-KD embryos. Furthermore, to understand the effect of PGC-1α-KD on the mitochondrial genome, we found a low mtDNA copy number in PGC-1α-KD day-8 bovine blastocysts. Several genes related to mitochondrial functioning, like ND1, ND3, ND5, ATPase8, COI, COII, and CYTB, were significantly downregulated in PGC-1α-KD embryos. Moreover, high mitochondrial depolarization (ΔΨm) and abnormal lipid depositions were observed in the PGC-1α KD blastocysts. SIRT1 is the upstream regulator of PGC-1α, but SIRT1 activation via Hesperetin does not affect PGC-1α-KD embryonic development considerably. In conclusion, PGC-1α plays a critical role in early embryo mitochondrial functioning, and any perturbation in its expression significantly disrupts early embryonic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。