Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5

基于改进的YOLOv5实现小鼠全视网膜神经节细胞自动计数

阅读:5
作者:Jing Zhang, Yi-Bo Huo, Jia-Liang Yang, Xiang-Zhou Wang, Bo-Yun Yan, Xiao-Hui Du, Ru-Qian Hao, Fang Yang, Juan-Xiu Liu, Lin Liu, Yong Liu, Hou-Bin Zhang

Abstract

Abstract in English, Chinese Glaucoma is characterized by the progressive loss of retinal ganglion cells (RGCs), although the pathogenic mechanism remains largely unknown. To study the mechanism and assess RGC degradation, mouse models are often used to simulate human glaucoma and specific markers are used to label and quantify RGCs. However, manually counting RGCs is time-consuming and prone to distortion due to subjective bias. Furthermore, semi-automated counting methods can produce significant differences due to different parameters, thereby failing objective evaluation. Here, to improve counting accuracy and efficiency, we developed an automated algorithm based on the improved YOLOv5 model, which uses five channels instead of one, with a squeeze-and-excitation block added. The complete number of RGCs in an intact mouse retina was obtained by dividing the retina into small overlapping areas and counting, and then merging the divided areas using a non-maximum suppression algorithm. The automated quantification results showed very strong correlation (mean Pearson correlation coefficient of 0.993) with manual counting. Importantly, the model achieved an average precision of 0.981. Furthermore, the graphics processing unit (GPU) calculation time for each retina was less than 1 min. The developed software has been uploaded online as a free and convenient tool for studies using mouse models of glaucoma, which should help elucidate disease pathogenesis and potential therapeutics. 青光眼是一种特征为视网膜神经节细胞(RGC)持续性丢失的疾病,其发病机制尚不明确。为了研究青光眼的发病机制并评估RGC的减少过程,通常使用小鼠模型来模拟人类青光眼,并使用特定标记物标记量化RGC的数量。人工手动计算RGC数量的方式非常耗时,并且很容易收到主观偏见的影响。半自动计数的方式会因为参数设置不同而导致结果存在较大的差异,这不符合客观计算的要求。为了提高计数的准确性和效率,该文提出了一种基于改进YOLOv5的全自动计数算法,该算法使用五通道代替单个通道,并添加注意力机制提高计数精度。在整个小鼠视网膜RGC数量的计算过程中,先通过将视网膜分割成小的部分重叠区域并单独计数,然后使用非最大抑制算法将所有分割区域计算结果汇总在一起得到最终个数。自动计数结果显示,该文的算法与手动计数结果有很强的相关性(平均皮尔逊相关系数约等于0.993),而且模型的平均精准度AP达到了0.981。此外,每个小鼠视网膜在GPU下的计算时间少于一分钟,全自动计数的软件已经在网上开源供大家免费使用,它将为使用小鼠模型进行青光眼研究的研究人员提供一个方便的工具,以了解青光眼的发病机制并开发潜在的治疗药物。.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。