Significance
Fluoropolymers have been widely used in creating various biomedical implants and devices. However, nitric oxide (NO) release fluoropolymers have not been well studied to date. Additionally, in the application of biomaterials doped with NO donors, a significant amount of NO donors and their byproducts almost always leach into aqueous environment. We now report an NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluoropolymer by incorporating a new fluorinated S-nitrosothiol. The NO release can last for 16 days under physiological conditions. The total chemical leaching was determined to be only 0.6 mol% of the initial S-nitrosothiol loaded. As expected, significant antimicrobial/anti-biofilm activities of the NO release PVDF-HFP film were observed against Gram positive S. aureus and Gram negative P. aeruginosa bacterial strains.
Statement of significance
Fluoropolymers have been widely used in creating various biomedical implants and devices. However, nitric oxide (NO) release fluoropolymers have not been well studied to date. Additionally, in the application of biomaterials doped with NO donors, a significant amount of NO donors and their byproducts almost always leach into aqueous environment. We now report an NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluoropolymer by incorporating a new fluorinated S-nitrosothiol. The NO release can last for 16 days under physiological conditions. The total chemical leaching was determined to be only 0.6 mol% of the initial S-nitrosothiol loaded. As expected, significant antimicrobial/anti-biofilm activities of the NO release PVDF-HFP film were observed against Gram positive S. aureus and Gram negative P. aeruginosa bacterial strains.
