Ibuprofen alters epoxide hydrolase activity and epoxy-oxylipin metabolites associated with different metabolic pathways in murine livers

布洛芬改变小鼠肝脏中环氧化物水解酶活性和与不同代谢途径相关的环氧脂质代谢物

阅读:8
作者:Shuchita Tiwari, Jun Yang, Christophe Morisseau, Blythe Durbin-Johnson, Bruce D Hammock, Aldrin V Gomes

Abstract

Over the last decade oxylipins have become more recognized for their involvement in several diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are known to inhibit cyclooxygenase (COX) enzymes, but how NSAIDs affect oxylipins, in addition to COX products, in animal tissues is not well understood. Oxylipins in livers from male and female mice treated with 100 mg/kg/day of ibuprofen for 7 days were investigated. The results showed that ibuprofen treated male livers contained 7 times more altered oxylipins than ibuprofen treated female livers. In male and female livers some prostaglandins were altered, while diols, hydroxy fatty acids and epoxides were significantly altered in male livers. Some soluble epoxide hydrolase (sEH) products, such as 9,10-DiHODE were found to be decreased, while sEH substrates (such as 9(10)-EpODE and 5(6)-EpETrE) were found to be increased in male livers treated with ibuprofen, but not in ibuprofen treated female livers. The enzymatic activities of sEH and microsomal epoxide hydrolase (mEH) were elevated by ibuprofen in both males and females. Analyzing the influence of sex on the effect of ibuprofen on oxylipins and COX products showed that approximately 27% of oxylipins detected were influenced by sex. The results reveal that ibuprofen disturbs not only the COX pathway, but also the CYP450 and lipoxygenase pathways in male mice, suggesting that ibuprofen is likely to generate sex related differences in biologically active oxylipins. Increased sEH activity after ibuprofen treatment is likely to be one of the mechanisms by which the liver reduces the higher levels of EpODEs and EpETrEs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。