Annexin-A1 identified as the oral epithelial cell anti-Candida effector moiety

膜联蛋白-A1 被鉴定为口腔上皮细胞抗念珠菌效应部分

阅读:4
作者:E A Lilly, J Yano, P L Fidel Jr

Abstract

Innate and adaptive immunity are considered critical to protection against mucosal candidal infections. Among innate anti-Candida mechanisms, oral and vaginal epithelial cells have antifungal activity. The mechanism is fungistatic, acid-labile and includes a requirement for cell contact by intact, but not necessarily live, epithelial cells. The purpose of this study was to use the acid-labile property to further characterize the effector moiety. Surface material extracted from phosphate-buffered saline (PBS) -treated, but not acid-treated, epithelial cells significantly inhibited the growth of Candida blastoconidia in a dose-dependent manner which was abrogated by prior heat and protease treatment. Proteins extracted from PBS-treated cells bound blastoconidia and hyphae more intensely than those from acid-treated cells. Proteins from PBS-treated cells eluted from Candida revealed two unique bands of approximately 33 and 45 kDa compared with acid-treated cells. Mass spectrometry identified these proteins as Annexin-A1 and actin, respectively. Oral epithelial cells stained positive for Annexin-A1, but not actin. Western blots showed reduced Annexin-A1 in proteins from acid-treated epithelial cells compared with those from PBS-treated epithelial cells. Lastly, it was demonstrated that immunoprecipitation of Annexin-A1 from proteins extracted from PBS-treated oral epithelial cells resulted in abrogation of inhibitory activity. Taken together, these results indicate that Annexin-A1 is a strong candidate for the epithelial cell anti-Candida effector protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。