A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots

一类新的氧化角鲨烯环化酶指导单子叶植物中抗菌植物保护剂的合成

阅读:8
作者:K Haralampidis, G Bryan, X Qi, K Papadopoulou, S Bakht, R Melton, A Osbourn

Abstract

Many plants synthesize antimicrobial secondary metabolites as part of their normal program of growth and development, often sequestering them in tissues where they may protect against microbial attack. These include glycosylated triterpenoids (saponins), natural products that are exploited by man for a variety of purposes including use as drugs [Hostettmann, K. & Marston, A. (1995) Saponins (Cambridge Univ. Press, Cambridge, U.K.)]. Very little is known about the genes required for the synthesis of this important family of secondary metabolites in plants. Here we show the novel oxidosqualene cyclase AsbAS1 catalyzes the first committed step in the synthesis of antifungal triterpenoid saponins that accumulate in oat roots. We also demonstrate that two sodium azide-generated saponin-deficient mutants of oat, which define the Sad1 genetic complementation group, are defective in the gene encoding this enzyme and provide molecular genetic evidence indicating a direct link between AsbAS1, triterpenoid saponin biosynthesis, and disease resistance. Orthologs of AsbAS1 are absent from modern cereals and may have been lost during selection, raising the possibility that this gene could be exploited to enhance disease resistance in crop plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。