Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model

通过 S-亚硝基-N-乙酰青霉胺 (SNAP) 溶剂溶胀浸渍提高硅橡胶体外管的血液相容性并在兔血栓形成模型中进行评估

阅读:7
作者:Elizabeth J Brisbois, Terry C Major, Marcus J Goudie, Robert H Bartlett, Mark E Meyerhoff, Hitesh Handa

Significance

Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity.

Statement of significance

Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。