Seed Imbibition and Metabolism Contribute Differentially to Initial Assembly of the Soybean Holobiont

种子吸胀和代谢对大豆全生物体的初始组装有不同的贡献

阅读:9
作者:Davide Gerna, David Clara, Livio Antonielli, Birgit Mitter, Thomas Roach

Abstract

Seed germination critically determines successful plant establishment and agricultural productivity. In the plant holobiont's life cycle, seeds are hubs for microbial communities' assembly, but what exactly shapes the holobiont during germination remains unknown. Here, 16S rRNA gene amplicon sequencing characterized the bacterial communities in embryonic compartments (cotyledons and axes) and on seed coats pre- and post-germination of four soybean (Glycine max) cultivars, in the presence or absence of exogenous abscisic acid (ABA), which prevented germination and associated metabolism of seeds that had imbibed. Embryonic compartments were metabolically profiled during germination to design minimal media mimicking the seed endosphere for bacterial growth assays. The distinction between embryonic and seed coat bacterial microbiomes of dry seeds weakened during germination, resulting in the plumule, radicle, cotyledon, and seed coat all hosting the same most abundant and structurally influential genera in germinated seeds of every cultivar. Treatment with ABA prevented the increase of bacterial microbiomes' richness, but not taxonomic homogenization across seed compartments. Growth assays on minimal media containing the most abundant metabolites that accumulated in germinated seeds revealed that seed reserve mobilization promoted enrichment of copiotrophic bacteria. Our data show that seed imbibition enabled distribution of seed-coat-derived epiphytes into embryos irrespective of germination, while germinative metabolism promoted proliferation of copiotrophic taxa, which predominated in germinated seeds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。