A hybrid multiscale model for investigating tumor angiogenesis and its response to cell-based therapy

用于研究肿瘤血管生成及其对细胞治疗反应的混合多尺度模型

阅读:8
作者:Melisa Hendrata, Janti Sudiono

Abstract

Angiogenesis, a formation of blood vessels from an existing vasculature, plays a key role in tumor growth and its progression into cancer. The lining of blood vessels consists of endothelial cells (ECs) which proliferate and migrate, allowing the capillaries to sprout towards the tumor to deliver the needed oxygen. Various treatments aiming to suppress or even inhibit angiogenesis have been explored. Mesenchymal stem cells (MSCs) have recently been undergoing development in cell-based therapy for cancer due to their ability to migrate towards the capillaries and induce the apoptosis of the ECs, causing capillary degeneration. However, further investigations in this direction are needed as it is usually difficult to preclinically assess the efficacy of such therapy. We develop a hybrid multiscale model that integrates molecular, cellular, tissue and extracellular components of tumor system to investigate angiogenesis and tumor growth under MSC-mediated therapy. Our simulations produce angiogenesis and vascular tumor growth profiles as observed in the experiments. Furthermore, the simulations show that the effectiveness of MSCs in inducing EC apoptosis is density dependent and its full effect is reached within several days after MSCs application. Quantitative agreements with experimental data indicate the predictive potential of our model for evaluating the efficacy of cell-based therapies targeting angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。