Influence of omega-3 fatty acids on bovine luteal cell plasma membrane dynamics

ω-3 脂肪酸对牛黄体细胞质膜动力学的影响

阅读:8
作者:Michele R Plewes, Patrick D Burns, Richard M Hyslop, B George Barisas

Abstract

Fish oil is a rich source of omega-3 fatty acids which disrupt lipid microdomain structure and affect mobility of the prostaglandin F2α (FP) receptor in bovine luteal cells. The objectives of this study were to determine the effects of individual omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on 1) membrane fatty acid composition, 2) lipid microdomain structure, and 3) lateral mobility of the FP receptor in bovine luteal cells. Ovaries were collected from a local abattoir (n=5/experiment). The corpus luteum was resected and enzymatically digested using collagenase to generate a mixed luteal cell population. In all experiments, luteal cells were treated with 0, 1, 10 or 100μM EPA or DHA for 72h to allow incorporation of fatty acids into membrane lipids. Results from experiment 1 show that culturing luteal cells in the presence of EPA or DHA increased these luteal fatty acids. In experiment 2, both EPA and DHA increased spatial distribution of lipid microdomains in a dose-dependent manner. Single particle tracking results from experiment 3 show that increasing both EPA and DHA concentrations increased micro- and macro-diffusion coefficients, increased domain size, and decreased residence time of FP receptors. Collectively, results from this study demonstrate similar effects of EPA and DHA on lipid microdomain structure and lateral mobility of FP receptors in cultured bovine luteal cells. Moreover, only 10μM of either fatty acid was needed to mimic the effects of fish oil.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。