Inhibitory effect of hydroxychloroquine on glucocorticoid-induced osteoporosis in lupus therapy

羟氯喹对狼疮治疗中糖皮质激素诱导的骨质疏松症的抑制作用

阅读:1
作者:Wenlin Qiu ,Xiaoxiao Han ,Tong Yu ,Lijuan Jiang ,Xuefei Wang ,Ruizhi Feng ,Xiaoru Duan ,Yao Teng ,Haifeng Yin ,Maria I Bokarewa ,Guo-Min Deng

Abstract

Objectives: Systemic lupus erythematosus (SLE) is a chronic and severe autoimmune disease characterised by persistent inflammation. Hydroxychloroquine (HCQ) and glucocorticoids (GCs) are the primary agents commonly used in combination as the first-line treatment for SLE. Nevertheless, the specific mechanisms responsible for the effectiveness of this combined therapy with HCQ and GCs have not been fully elucidated. This study aimed to reveal the mechanism behind combined HCQ and GC treatment in lupus. Methods: An SLE IgG-induced inflammation model was used to investigate the anti-inflammatory effects of HCQ and dexamethasone (DXM). A glucocorticoid-induced osteoporosis (GIOP) model was used to investigate the inhibitory effect of HCQ on osteoclastogenesis. Inflammation was assessed by haematoxylin and eosin staining. Bone metabolism was determined structurally via microcomputer tomography and in bone marrow-derived osteoclast cultures. Results: An SLE IgG-induced inflammation model demonstrated that HCQ could not ameliorate inflammation alone but could enhance the anti-inflammatory effect of GCs by decreasing the expression of FcγRI on macrophages. HCQ inhibited osteoclastogenesis induced by GCs and RANKL by upregulating nuclear factor erythroid 2-related factor 2 and limiting reactive oxygen species formation, which mitigated GC-induced bone loss. Conclusion: The results indicate that HCQ improved the anti-inflammatory effects of GCs and inhibits the osteoclastogenesis in experimental lupus. This study offers valuable insights into the mechanisms underlying the combined treatment of lupus with HCQ and GCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。