Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function

埃博拉病毒糖蛋白成熟和功能中 N-糖基化的机制理解

阅读:9
作者:Bin Wang, Yujie Wang, Dylan A Frabutt, Xihe Zhang, Xiaoyu Yao, Dan Hu, Zhuo Zhang, Chaonan Liu, Shimin Zheng, Shi-Hua Xiang, Yong-Hui Zheng

Abstract

The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP1 and the fusion-mediating GP2 subunits and incorporated into virions to initiate infection. GP1 and GP2 form heterodimers that have 15 or two N-glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N-glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP1 NGSs are not critical, the two GP2 NGSs, Asn563 and Asn618, are essential for GP function. Further analysis uncovered that Asn563 and Asn618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn563 and Asn618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。