A Novel T55A Variant of Gs α Associated with Impaired cAMP Production, Bone Fragility, and Osteolysis

Gs α 的新型 T55A 变体与 cAMP 生成受损、骨质脆弱和骨质溶解有关

阅读:7
作者:Kelly Wentworth, Alyssa Hsing, Ashley Urrutia, Yan Zhu, Andrew E Horvai, Murat Bastepe, Edward C Hsiao

Abstract

G-protein coupled receptors (GPCRs) mediate a wide spectrum of biological activities. The GNAS complex locus encodes the stimulatory alpha subunit of the guanine nucleotide binding protein (Gsα) and regulates production of the second messenger cyclic AMP (cAMP). Loss-of-function GNAS mutations classically lead to Albright's Hereditary Osteodystrophy (AHO) and pseudohypoparathyroidism, often with significant effects on bone formation and mineral metabolism. We present the case of a child who exhibits clinical features of osteolysis, multiple childhood fractures, and neonatal SIADH. Exome sequencing revealed a novel de novo heterozygous missense mutation of GNAS (c.163A<G, p.T55A) affecting the p-loop of the catalytic Gsα GTPase domain. In order to further assess whether this unique mutation resulted in a gain or loss of function of Gsα, we introduced the mutation into a rat GNAS plasmid and performed functional studies to assess the level of cAMP activity associated with this mutation. We identified a 64% decrease in isoproterenol-induced cAMP production in vitro, compared to wild type, consistent with loss of Gsα activity. Despite a significant decrease in isoproterenol-induced cAMP production in vitro, this mutation did not produce a classical AHO phenotype in our patient; however, it may account for her presentation with childhood fractures and osteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。