The three-dimensional structure and recognition mechanism of Manduca sexta peptidoglycan recognition protein-1

烟草天蛾肽聚糖识别蛋白-1的三维结构及识别机制

阅读:5
作者:Yingxia Hu, Xiaolong Cao, Xiuru Li, Yang Wang, Geert-Jan Boons, Junpeng Deng, Haobo Jiang

Abstract

Peptidoglycan recognition proteins (PGRPs) recognize bacteria through their unique cell wall constituent, peptidoglycans (PGs). PGRPs are conserved from insects to mammals and all function in antibacterial defense. In the tobacco hornworm Manduca sexta, PGRP1 and microbe binding protein (MBP) interact with PGs and hemolymph protease-14 precursor (proHP14) to yield active HP14. HP14 triggers a serine protease network that produces active phenoloxidase (PO), Spätzle, and other cytokines to stimulate immune responses. PGRP1 binds preferentially to diaminopimelic acid (DAP)-PGs of Gram-negative bacteria and Gram-positive Bacillus and Clostridium species than Lys-PGs of other Gram-positive bacteria. In this study, we synthesized DAP- and Lys-muramyl pentapeptide (MPP) and monitored their associations with M. sexta PGRP1 by surface plasmon resonance. The Kd values (0.57 μM for DAP-MPP and 45.6 μM for Lys-MPP) agree with the differential recognition of DAP- and Lys-PGs. To reveal its structural basis, we produced the PGRP1 in insect cells and determined its structure at a resolution of 2.1 Å. The protein adopts a fold similar to those from other PGRPs with a classical L-shaped PG-binding groove. A unique loop lining the shallow groove suggests a different ligand-binding mechanism. In summary, this study provided new insights into the PG recognition by PGRPs, a critical first step that initiates the serine protease cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。